Recursive Decomposition for Nonconvex Optimization

نویسندگان

  • Abram L. Friesen
  • Pedro M. Domingos
چکیده

Continuous optimization is an important problem in many areas of AI, including vision, robotics, probabilistic inference, and machine learning. Unfortunately, most real-world optimization problems are nonconvex, causing standard convex techniques to find only local optima, even with extensions like random restarts and simulated annealing. We observe that, in many cases, the local modes of the objective function have combinatorial structure, and thus ideas from combinatorial optimization can be brought to bear. Based on this, we propose a problem-decomposition approach to nonconvex optimization. Similarly to DPLL-style SAT solvers and recursive conditioning in probabilistic inference, our algorithm, RDIS, recursively sets variables so as to simplify and decompose the objective function into approximately independent subfunctions, until the remaining functions are simple enough to be optimized by standard techniques like gradient descent. The variables to set are chosen by graph partitioning, ensuring decomposition whenever possible. We show analytically that RDIS can solve a broad class of nonconvex optimization problems exponentially faster than gradient descent with random restarts. Experimentally, RDIS outperforms standard techniques on problems like structure from motion and protein folding.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complete decomposition algorithm for nonconvex separable optimization problems and applications

Abstraet~In this paper, we present a complete decomposition algorithm for nonconvex separable optimization problems applied in the optimal control problems. This complete decomposition algorithm combines recursive quadratic programming with the dual method. When our algorithm is applied to discretized optimal control problems, a simple and parallel computation and a simple and regular data flow...

متن کامل

Stochastic Recursive Gradient Algorithm for Nonconvex Optimization

In this paper, we study and analyze the mini-batch version of StochAstic Recursive grAdient algoritHm (SARAH), a method employing the stochastic recursive gradient, for solving empirical loss minimization for the case of nonconvex losses. We provide a sublinear convergence rate (to stationary points) for general nonconvex functions and a linear convergence rate for gradient dominated functions,...

متن کامل

An Efficient Neurodynamic Scheme for Solving a Class of Nonconvex Nonlinear Optimization Problems

‎By p-power (or partial p-power) transformation‎, ‎the Lagrangian function in nonconvex optimization problem becomes locally convex‎. ‎In this paper‎, ‎we present a neural network based on an NCP function for solving the nonconvex optimization problem‎. An important feature of this neural network is the one-to-one correspondence between its equilibria and KKT points of the nonconvex optimizatio...

متن کامل

Exact Methods for Recursive Circle Packing

Packing rings into a minimum number of rectangles is an optimization problem which appears naturally in the logistics operations of the tube industry. It encompasses two major difficulties, namely the positioning of rings in rectangles and the recursive packing of rings into other rings. This problem is known as the Recursive Circle Packing Problem (RCPP). We present the first exact method for ...

متن کامل

On a decomposition method for nonconvex global optimization

A rigorous foundation is presented for the decomposition method in nonconvex global optimization, including parametric optimization, partly convex, partly monotonic, and monotonic/linear optimization. Incidentally, some errors in the recent literature on this subject are pointed out and fixed.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1611.02755  شماره 

صفحات  -

تاریخ انتشار 2015